organic compounds

30937 measured reflections

 $R_{\rm int} = 0.053$

2602 independent reflections

1716 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1-Adamantyl)-1-(3-aminophenyl)ethanol

Michal Rouchal,^a Zuzana Kozubková,^a Marek Nečas^b and Robert Vícha^a*

^aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín,762 72, Czech Republic, and ^bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic

Correspondence e-mail: rvicha@ft.utb.cz

Received 16 August 2011; accepted 24 August 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.032; *wR* factor = 0.068; data-to-parameter ratio = 13.7.

In the crystal structure of the title compound, $C_{18}H_{25}NO$, molecules are linked *via* $O-H \cdots N$ hydrogen bonds, forming chains parallel to the *c* axis. Additional weak $N-H \cdots O$ interactions stabilize the crystal packing. The adamantane cage consists of three fused cyclohexane rings in almost ideal chair conformations, with C-C-C angles in the range 107.9 (10)–111.3 (11)°.

Related literature

For the biological activity of adamantane-bearing compounds, see: van der Schyf & Geldenhuys (2009). For related structures, see: Rouchal *et al.* (2009, 2010).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{25}\text{NO} \\ M_r = 271.39 \\ \text{Orthorhombic, } Pccn \\ a = 16.4467 \ (7) \ \text{\AA} \\ b = 22.1873 \ (9) \ \text{\AA} \\ c = 8.1033 \ (4) \ \text{\AA} \end{array}$

 $V = 2957.0 \text{ (2) } \text{\AA}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 120 K $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Kuma KM-4 CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2009) $T_{min} = 0.984, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.068$	independent and constrained
S = 0.85	refinement
2602 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
190 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$ \begin{array}{c} O1 - H1A \cdots N1^{i} \\ N1 - H1C \cdots O1^{ii} \\ N1 - H1B \cdots O1^{iii} \end{array} $	0.84	2.10	2.9400 (14)	176
	0.930 (15)	2.295 (15)	3.2048 (16)	166.0 (13)
	0.930 (16)	2.357 (16)	3.2472 (16)	160.1 (14)

Symmetry codes: (i) $-x + \frac{1}{2}$, y, $z - \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x, y, z + 1.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

Financial support of this work by the Tomas Bata Foundation, the Czech Ministry of Education (project No. MSM 7088352101) and the Internal Funding Agency of Tomas Bata University in Zlin (project No. IGA/6/FT/11/D) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2344).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Rouchal, M., Nečas, M. & Vícha, R. (2009). Acta Cryst. E65, o1018.
- Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736.
- Schyf, C. J. van der & Geldenhuys, W. J. (2009). *Neurotherapeutics*, **6**, 175–186. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122.

supplementary materials

Acta Cryst. (2011). E67, o2515 [doi:10.1107/S1600536811034763]

2-(1-Adamantyl)-1-(3-aminophenyl)ethanol

M. Rouchal, Z. Kozubková, M. Necas and R. Vícha

Comment

It is matter of common knowledge that the well advised introduction of the highly lipophilic adamantane moiety into biologically active compounds might improve some pharmacological properties of the resulting molecule (van der Schyf & Geldenhuys, 2009). The title compound belongs to the series of recently synthesized building blocks for drug modification based on adamantylated aromatic amines.

The asymmetric unit of the title compound consists of a single molecule (Fig. 1). The benzene ring is nearly planar with a maximum deviation from the best plane being 0.006 (13) Å for C13. The torsion angles describing an arrangement of adamantane cage, benzene ring and aliphatic linker C1–C11–C12–C13, C11–C12–C13, and C10–C1–C11–C12 are 158.37 (11), -95.75 (14), and -178.42 (11)°, respectively. The presented structure is linked into pairs by O–H…N hydrogen bonds (Fig. 2, Table 1). The crystal packing is further stabilized *via* intermolecular N–H…O interactions (Table 1).

Experimental

2-(1-Adamantyl)-1-(3-nitrophenyl)ethanol (350 mg, 1.16 mmol) was dissolved in methanol (34 cm³) and 7 cm³ of hydrochloric acid/water (1/1, v/v) was added. Into the refluxed and well stirred mixture, portions of an iron powder were added successively. The reaction was stopped when TLC indicated the consumption of all starting material. The mixture was neutralized with 5% solution of NaOH (50 cm³) and extracted with diethyl ether (6 × 10 cm³). Combined organic layers were twice washed with brine, dried over sodium sulfate and evaporated in vacuum. The purification of crude material by washing with hexane provided the desired product as a colourless crystalline powder (258 mg, 82%, mp 415–418 K). The crystal used for data collection was grown by spontaneous evaporation from diethyl ether at room temperature.

Refinement

All carbon bound H atoms were placed at calculated positions and were refined as riding with their U_{iso} set to $1.2U_{eq}$ of the respective carrier atoms. The oxygen bound hydrogen was placed at calculated coordinates refined with a torsional degree of freedom, and with U_{iso} set to $1.5U_{eq}$ of the carrier atom. Nitrogen bound H atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1. Ellipsoid plot of the asymmetric unit with atoms represented as 50% probability ellipsoids. Hydrogen atoms are shown as small spheres of arbitrary radius.

Fig. 2. Part of the crystal structure of the title compound showing the H-bonds (dashed lines). H-atoms (except those which are involved in H-bonding) have been omitted for clarity. Symmetry codes: (i) -x+0.5,y,z-0.5; (ii) x,-y+1.5,z+0.5; (iii) x,y,z+1.

2-(1-Adamantyl)-1-(3-aminophenyl)ethanol

Crystal	data
---------	------

C ₁₈ H ₂₅ NO	$D_{\rm x} = 1.219 {\rm ~Mg~m}^{-3}$
$M_r = 271.39$	Melting point: 417 K
Orthorhombic, Pccn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ab 2ac	Cell parameters from 6715 reflections
a = 16.4467 (7) Å	$\theta = 2.9 - 27.3^{\circ}$
b = 22.1873 (9) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 8.1033 (4) Å	T = 120 K
$V = 2957.0 (2) \text{ Å}^3$	Block, colourless
Z = 8	$0.30 \times 0.20 \times 0.10 \text{ mm}$
F(000) = 1184	

Data collection

Kuma KM-4 CCD diffractometer	2602 independent reflections
Radiation source: fine-focus sealed tube	1716 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.053$
Detector resolution: 0.06 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
ω scans	$h = -18 \rightarrow 19$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)	$k = -26 \rightarrow 26$
$T_{\min} = 0.984, T_{\max} = 1.000$	$l = -8 \rightarrow 9$
30937 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.068$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.85	$w = 1/[\sigma^2(F_0^2) + (0.0369P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
2602 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

190 parameters	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.36193 (5)	0.68130 (4)	0.21617 (11)	0.0266 (2)
H1A	0.3139	0.6810	0.2513	0.040*
N1	0.30745 (7)	0.68654 (6)	0.83127 (16)	0.0257 (3)
C1	0.54376 (8)	0.63700 (5)	0.11634 (15)	0.0185 (3)
C2	0.53840 (8)	0.57371 (6)	0.04034 (16)	0.0240 (3)
H2A	0.5560	0.5434	0.1227	0.029*
H2B	0.4813	0.5649	0.0102	0.029*
C3	0.59193 (8)	0.56895 (6)	-0.11291 (17)	0.0271 (4)
Н3	0.5875	0.5274	-0.1599	0.033*
C4	0.68033 (8)	0.58181 (6)	-0.06886 (18)	0.0290 (4)
H4A	0.6998	0.5519	0.0127	0.035*
H4B	0.7147	0.5785	-0.1688	0.035*
C5	0.68711 (8)	0.64514 (6)	0.00313 (17)	0.0258 (3)
Н5	0.7450	0.6536	0.0332	0.031*
C6	0.65776 (8)	0.69158 (6)	-0.12231 (18)	0.0281 (4)
H6A	0.6923	0.6900	-0.2222	0.034*
H6B	0.6619	0.7326	-0.0746	0.034*
C7	0.56932 (8)	0.67818 (6)	-0.16850 (17)	0.0254 (3)
H7	0.5503	0.7082	-0.2519	0.030*
C8	0.51604 (8)	0.68229 (6)	-0.01404 (15)	0.0228 (3)
H8A	0.5191	0.7236	0.0319	0.027*
H8B	0.4587	0.6741	-0.0440	0.027*
С9	0.56360 (8)	0.61470 (6)	-0.24141 (16)	0.0282 (4)
H9A	0.5067	0.6060	-0.2737	0.034*
H9B	0.5981	0.6118	-0.3412	0.034*
C10	0.63360 (8)	0.64953 (6)	0.15736 (17)	0.0242 (3)
H10A	0.6387	0.6904	0.2056	0.029*
H10B	0.6527	0.6201	0.2405	0.029*
C11	0.49559 (8)	0.64112 (6)	0.27851 (16)	0.0226 (3)
H11A	0.5205	0.6125	0.3574	0.027*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11B	0.5039	0.6821	0.3238	0.027*
C12	0.40426 (8)	0.62906 (6)	0.27706 (16)	0.0221 (3)
H12	0.3932	0.5945	0.2009	0.027*
C13	0.37566 (8)	0.61198 (6)	0.44839 (16)	0.0197 (3)
C14	0.35838 (7)	0.65598 (6)	0.56444 (16)	0.0199 (3)
H14	0.3645	0.6972	0.5356	0.024*
C15	0.33224 (7)	0.64093 (6)	0.72247 (17)	0.0209 (3)
C16	0.32485 (8)	0.58040 (6)	0.76474 (17)	0.0250 (3)
H16	0.3071	0.5694	0.8721	0.030*
C17	0.34335 (8)	0.53647 (6)	0.65039 (18)	0.0277 (4)
H17	0.3390	0.4952	0.6804	0.033*
C18	0.36811 (8)	0.55162 (6)	0.49282 (17)	0.0259 (3)
H18	0.3800	0.5209	0.4149	0.031*
H1B	0.3144 (9)	0.6768 (6)	0.942 (2)	0.045 (5)*
H1C	0.3315 (8)	0.7235 (7)	0.8081 (17)	0.033 (4)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0216 (5)	0.0341 (5)	0.0241 (6)	0.0052 (4)	0.0027 (5)	0.0062 (5)
N1	0.0280 (7)	0.0324 (8)	0.0166 (8)	0.0026 (6)	0.0010 (6)	0.0003 (6)
C1	0.0189 (8)	0.0208 (7)	0.0158 (8)	0.0003 (6)	0.0010 (6)	-0.0002 (6)
C2	0.0250 (8)	0.0223 (7)	0.0247 (8)	-0.0017 (6)	0.0019 (6)	0.0005 (6)
C3	0.0303 (8)	0.0224 (7)	0.0286 (9)	-0.0005 (6)	0.0046 (7)	-0.0073 (7)
C4	0.0272 (9)	0.0322 (8)	0.0276 (9)	0.0082 (6)	0.0086 (7)	0.0036 (7)
C5	0.0160 (7)	0.0359 (8)	0.0257 (9)	-0.0040 (6)	-0.0009 (6)	0.0016 (7)
C6	0.0296 (9)	0.0280 (8)	0.0268 (9)	-0.0056 (6)	0.0071 (7)	0.0018 (7)
C7	0.0270 (8)	0.0281 (8)	0.0210 (8)	0.0034 (6)	0.0015 (6)	0.0073 (7)
C8	0.0212 (7)	0.0241 (7)	0.0230 (8)	0.0027 (6)	-0.0003 (6)	0.0011 (6)
C9	0.0255 (8)	0.0403 (9)	0.0188 (8)	-0.0011 (7)	0.0026 (7)	-0.0045 (7)
C10	0.0239 (8)	0.0267 (8)	0.0221 (8)	0.0004 (6)	-0.0040 (7)	0.0005 (6)
C11	0.0252 (8)	0.0241 (7)	0.0185 (8)	-0.0008 (6)	-0.0023 (6)	0.0001 (6)
C12	0.0229 (8)	0.0232 (7)	0.0202 (8)	0.0023 (6)	0.0005 (7)	-0.0006 (6)
C13	0.0157 (7)	0.0256 (7)	0.0177 (8)	-0.0003 (6)	-0.0007 (6)	0.0008 (6)
C14	0.0174 (7)	0.0217 (7)	0.0206 (8)	-0.0004 (6)	-0.0006 (6)	0.0044 (6)
C15	0.0153 (7)	0.0291 (8)	0.0182 (8)	0.0010 (6)	-0.0018 (6)	0.0001 (6)
C16	0.0214 (8)	0.0331 (8)	0.0205 (9)	-0.0026 (6)	0.0009 (6)	0.0081 (7)
C17	0.0279 (9)	0.0239 (8)	0.0315 (10)	-0.0037 (6)	-0.0023 (7)	0.0070 (7)
C18	0.0277 (8)	0.0244 (7)	0.0255 (9)	0.0005 (6)	-0.0004 (7)	-0.0022 (7)

Geometric parameters (Å, °)

O1—C12	1.4393 (14)	С7—С9	1.5302 (18)
O1—H1A	0.8400	С7—С8	1.5305 (17)
N1—C15	1.4027 (17)	С7—Н7	1.0000
N1—H1C	0.930 (14)	C8—H8A	0.9900
N1—H1B	0.934 (16)	C8—H8B	0.9900
C1—C8	1.5277 (16)	С9—Н9А	0.9900
C1—C2	1.5360 (16)	С9—Н9В	0.9900

C1—C11	1.5373 (17)	C10—H10A	0.9900
C1—C10	1.5397 (18)	C10—H10B	0.9900
С2—С3	1.5258 (17)	C11—C12	1.5257 (18)
C2—H2A	0.9900	C11—H11A	0.9900
C2—H2B	0.9900	С11—Н11В	0.9900
C3—C4	1.5240 (18)	C12—C13	1.5141 (17)
C3—C9	1 5271 (18)	C12—H12	1 0000
С3—Н3	1 0000	C13—C14	1 3850 (17)
C4—C5	1 5254 (18)	C13—C18	1 3923 (17)
C4—H4A	0.9900	C14—C15	1 3915 (18)
C4—H4B	0.9900	C14—H14	0.9500
C5-C6	1 5258 (18)	C15-C16	1 3912 (17)
C_{5} C_{10}	1.5256 (18)	C16-C17	1.3789(19)
C5_H5	1.0000	C16—H16	0.9500
C6_C7	1.5311 (18)	C17-C18	1.3817(18)
С6—Н6А	0.9900	C17—H17	0.9500
С6—Н6В	0.9900	C18—H18	0.9500
	100 5	$C_1 = C_2 = H_{2,2}$	100 5
C12-01-111A	109.5	$C_1 = C_0 = H_0 A$	109.5
C15_N1_H1P	112.7(9) 112.9(0)	$C_1 = C_0 = H_0 P$	109.5
UIC NI HID	115.8 (9)	$C_1 = C_0 = H_0 D$	109.5
HIC - HIB	110.5(15) 107.98(10)		109.5
$C_8 = C_1 = C_2$	107.88 (10)	H8A = C8 = H8B	108.1
	113.47 (10)	$C_3 = C_9 = C_7$	109.26 (11)
	111.57 (10)	C3—C9—H9A	109.8
$C_8 = C_1 = C_{10}$	108.48 (10)	$C_{1} = C_{2} = H_{2}$	109.8
$C_2 = C_1 = C_{10}$	107.86 (10)	C3—C9—H9B	109.8
	107.42 (10)	С/—С9—Н9В	109.8
$C_3 = C_2 = C_1$	110.89 (10)	Н9А—С9—Н9В	108.3
C3—C2—H2A	109.5	C5-C10-C1	111.33 (11)
CI-C2-H2A	109.5	C5-C10-H10A	109.4
C3—C2—H2B	109.5	CI-CIO-HIOA	109.4
CI—C2—H2B	109.5	C5—C10—H10B	109.4
H2A—C2—H2B	108.1	C1—C10—H10B	109.4
C2—C3—C4	110.29 (11)	H10A—C10—H10B	108.0
C2—C3—C9	109.45 (11)	C12—C11—C1	119.36 (11)
C4—C3—C9	109.04 (11)	С12—С11—Н11А	107.5
С2—С3—Н3	109.3	C1—C11—H11A	107.5
С4—С3—Н3	109.3	C12—C11—H11B	107.5
С9—С3—Н3	109.3	C1—C11—H11B	107.5
C5—C4—C3	109.38 (11)	H11A—C11—H11B	107.0
С5—С4—Н4А	109.8	O1—C12—C13	111.45 (10)
C3—C4—H4A	109.8	O1—C12—C11	109.72 (10)
C5—C4—H4B	109.8	C13—C12—C11	110.04 (11)
C3—C4—H4B	109.8	O1—C12—H12	108.5
H4A—C4—H4B	108.2	C13—C12—H12	108.5
C6—C5—C4	110.13 (11)	C11—C12—H12	108.5
C6—C5—C10	108.59 (11)	C14—C13—C18	118.96 (12)
C4—C5—C10	109.19 (11)	C14—C13—C12	120.66 (11)
С6—С5—Н5	109.6	C18—C13—C12	120.37 (12)

supplementary materials

С4—С5—Н5	109.6	C13—C14—C15	121.27 (12)
С10—С5—Н5	109.6	C13—C14—H14	119.4
C5—C6—C7	109.41 (11)	C15-C14-H14	119.4
С5—С6—Н6А	109.8	C14—C15—C16	119.03 (12)
С7—С6—Н6А	109.8	C14—C15—N1	119.67 (12)
С5—С6—Н6В	109.8	C16-C15-N1	121.08 (13)
С7—С6—Н6В	109.8	C17—C16—C15	119.84 (13)
H6A—C6—H6B	108.2	C17—C16—H16	120.1
С6—С7—С9	109.36 (11)	C15—C16—H16	120.1
C6—C7—C8	109.41 (11)	C16—C17—C18	120.94 (13)
С9—С7—С8	109.60 (10)	С16—С17—Н17	119.5
С6—С7—Н7	109.5	C18—C17—H17	119.5
С9—С7—Н7	109.5	C17—C18—C13	119.95 (13)
С8—С7—Н7	109.5	C17—C18—H18	120.0
C1—C8—C7	110.82 (10)	C13-C18-H18	120.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O1—H1A····N1 ⁱ	0.84	2.10	2.9400 (14)	176.	
N1—H1C···O1 ⁱⁱ	0.930 (15)	2.295 (15)	3.2048 (16)	166.0 (13)	
N1—H1B…O1 ⁱⁱⁱ	0.930 (16)	2.357 (16)	3.2472 (16)	160.1 (14)	
Symmetry codes: (i) $-x+1/2$, y, $z-1/2$; (ii) x, $-y+3/2$, $z+1/2$; (iii) x, y, $z+1$.					

Fig. 2

